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ABSTRACT

Let x(t) be a diffusion satisfying the stochastic differential

equation dx(t) = f(x(t))dt + db(t), where f'(x) + f2(x) - ax2 + bx + c,

a ; 0. V. Bene! gave an explicit formula for the conditional density of

x(t) given y(s), 0 4 s 4 t, where y(s) - ftx(s)ds + w(t), when w(o) is
0

a Brownian process independent of x(°). This result is extended and then

applied to derive recursive filtering equations for estimating conditional

moments E{xn( t)ly(s), 0 4 s 4 t), for estimating polynomial functionals of

x(o), and for smoothing.
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SIGNIFICANCE AND EXPLANATION

A common problem in the analysis of stochastic systems is the estimation

of the system's state given only noise-corrupted or incomplete observations.

For instance, examples occur in comunications theory when one wants to

estimate a signal sent over a noisy channel. The problem of filtering is to

build an estimate, i.e. filter, that provides the best information about the

state given the observations.

The most desirable solution to a filtering problem is a recursive,

physically realizable algorithm that computes the best mean-square error

estimate, and thus it is important to find models for which such algorithms

exist. Recently, Benel defined a class of filtering problems that allow

explicit computation of the conditional density of the signal given the past

of the observations. This paper extends his result and then uses it to build

exact, recursive algorithms for estimating any moment of the signal and for

estimating polynomial-type transformations of the signal.
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1. Introduction.

Let f(x) be a real-valued function defined on all of R and satisfying

the Riccati equation

f' (x) + f2 (x) - ax2 + bx + c. (1o1)

It is assumed that f has no singularities. Note that this implies a > 0,

for otherwise f explodes at some finite x. This paper considers the

filtering problem
dx(t) = f(x(t))dt + db(t)

(1.2)

x(01 = x E R

dy(t) = x(t)dt + dw(t) (1.3)

in which b(s) and w(e) are independent Wiener processes, x(') is the

signal, and y(e) the observation of x(o).

For the system (1.1.)-(1.3), Benel [1) recently derived an explicit

formula for the conditional density of x(t) given Ft, where Ftt-t

algebra generated by (y(s)0 4 s 4 t). This result is interesting because

the class of functions satisfying (1.1) includes nonlinear f, whereas

conditional densities for (1 .2)-(1.3) had been computed previously only for

1Mathematics Department and the Mathematics Research Center, University of
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2Electrical Engineering Department, University of Maryland, College Park, MD
20742,
3Department of Electrical Engineering, University of Texas at Austin, Austin,
TX 78712.
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linear f: for examples and an extension to the multidimensional case, see

Bened (1].

Besides conditional densities one also wants to calculate filters

E{opF y } of x(l)- dependent statistics o . Given a random process SP(t)
t

we shall say that E{w(t)1F7 } is finite dimensionally computable (FDC) if it
t

can be expressed as the output of a finite dimensional system of stochastic

differential equations driven by y(*). When the signal dynamics in (1.2) are

linear, many examples of FDC estimates are known. For example, E{xn(t)IFY}

is FDC for any integer n, since the Kalman-Bucy equations calculate

E{x(t)IF7 } and the conditional variance, and higher order moments are
t

derived from these by virtue of the normality of the conditional density. A

more subtle class of examples consists of estimates E{I(t)1F7 } where n(t)
t

is any polynomial functional of x(e) in the form

'(t) . .. so fn )x 1k ' (s 1 ) 9 x  Skn( )ds "'ds, 1 4 i 4 n,
I' Psn n n**0 0n

in which Y is separable function and the {N.} are non-negative integers

(Marcus, Willsky (71, Marcus, Mitter, Ocone [6]). Formulae and recursive

systems for the smoothed estimate E{x(s)fFY} are also well known (see t31).
t

In this note, we extend the linear theory by showing that these same

statistics are FDC for the general model (1.1)-(1.3). The strategy, as in the

linear case, is to derive finite dimensional systems by using the explicit

form of the conditional density to truncate formally infinite dimensional

systems of moment equations. The material is organized as follows. In 12 we

calculate conditional joint densities of x(e) given Fy. As a consequence,
t

we show that the conditional law of the process {x(s)10 C s t given Fyt

and x(t) is Gaussian. This is precisely the feature that makes it possible

to handle polynomial functionals. In 13, we prove FDC of conditional moments,

smoothers, and polynomial functionals.

-2-



Lie algebraic techniques from geometric control theory have been

introduced recently into filtering, especially as regards finite dimensional

computability, and they have been worked out successfully for known FDC

problems in which f is linear. (For a survey of these ideas, see Brockett

[8].) The main results of this paper, in particular proposition 3.7, were

sugqested by a Lie algebraic analysis of (1.1)-(1.3). Consequently, it seems

that the full range of the Lie theory for linear drifts extends to the general

case (1.1). Since our methods here are not algebraic, we do not pursue the

issue further, but refer instead to Ocone [7] for further discussion.

"'-
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2. Conditional Joint Densities.

Let x(o) and y(O) be given from (1.1)-(1.3), and let t = 0 > S I >

> a , > 0 (z 00,z ,Zn) T. The expression p(z 0,tizs 1 1 00;

z ,snIFY) shall denote the joint density of (x(t),x(sl)iO',X(Sn))
Sntn+ 

1

conditioned on Fy# that is, for any bounded, Borel 4 + : R
t

E{C(x(t),'°ox( n))IFY} f *(z)p(zotgz1 iiz ,s IFY)dz.
Sn+1 n n t

in Theorem 2.1 of this section, we employ a method of Beneff [1] to compute an

explicit formula for this conditional density. Frm this we then derive

p(z1 ,o zn, IFY,x(t)) the conditional density of (x(s1),°°, X(Sn))

given Fy and x(t).
t

The results are stated in terms of an auxiliary process E(t), evolving

in R3 and defined by

d(t) = A(t) (t)dt + y(t) dB(t)

E(0) - (x,O,O)T

where [ -K 0 01
A(t) 0 0 0 ,

y(t)- 1/2 b 0 0

K (a+1) 1/2

and B(O) is a Brownian motion independent of the signal and observation

noises, b(O) and w(e).

-4-



"W Let

" 0 (t) ,( 1 )  PCT(n))

(C I (W~t ,Yl ),*Go,&l(Sn )) 
T

Then the following conditional moments are needed:

~m(t) :- E{E(t)IFY)
t

R(t,s) :- ov(E(t),C(s) IFy)
t

R(t) - Erij(t)]14i,J<3 := R(t,t)

M(t,'°*S )  E{-IFY

=(ml(t) ,660m1(sn))
T

P0(t,s1,*eO,Snl) :- Var(- 0IFY )

0 0 t

P(t ' 's n  :=Cov(E.,-o FY )

'n '0 t

(-- (- - E{ F})TIFY}

: ~Q(t's1,  , n  :=Var(='-IFY).

To simplify later expressions, we shall often drop the (t,s1,'is n

dependence and write only M, P0 P and Q. In addition, let

- (0,I,-i, 3(n+) The random vectors P0v and ?v play an

important role in theorem 2.1 and are related by

Pv == ((P 0V) l,(P 0 V) 4,'@,(P0V3n+1) •

Note that (Pv)k = (P0v)3k2 = cov(C (Ska ) 2 (t) - C3(t)IFY).

It is important to observe that all these conditional moments are properly

thought of as functionals (on C[0,t]) of y(.). Indeed, these functionals

are easily calculated by solving for every y(') e C[0,t] the system

1 -5-
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A(s) - A(s)& (sds + Y(s dB(s)

y y 0

.(o) - (x,O,O)
T

y

Then, if m(t,y(')) E (t), m(t)(&) = m(t,y(')(w)), and similary for R,

Y
P0 , etc.

As a final bit of notation, set F(z0) -f f(s)dso
0

Theorem 2.1. Let t > s > > > s * Then
1 2 n

iP(zO't'zl's1;*1P 'Zn'SnI)

= '/ Y)exp F(z0) + z0y(t) 
+ xK(z 0-x) + K [z -x)2 

2 t ]

x exp{- 1/2 <z - M + Pv, Q 1 (z- M+ Pv)>)

where ' = (t,s 1 ,.*,S ,X) is a normalizing factor.

Proof. The demonstration is analogous to Benel' proof in (1] of the case

p(Zo#'tIFy), and so we shall only sketch the main steps. The Kallianpur-

Striebel formula for conditional estimation in system (1.2)-(1.3) implies that

p(z 0 ,t**z 8 ,s IFy )dz 0 ••"dz
n'nt 0 n

(2.2)

En {x(si)Cdzi)exp ftx(s)dy(s) t 2 ()ds}
j-O 0 0

In expression (2.2), we think of y(t) as a fixed function and of E as an

expectation against the measure 0 induced by (1.2) on the space of

ontinuous sample paths x(*). 'a' here means proportional up to a

normalization factor that does not depend on z. To evaluate (2.2) we follow

Bene" and apply a sequence of Girsanov measure transformations. Let P Rx

denote the measure on CE0,t] induced by x + B(O). Then P << M 1x and

-6-



dli (x(@)) - exp( ltfxls))dxls) -1/2 frf 2(x())do).

-, ,x 0 0

By using this to change measures in the expectation term of (2.2) and noting,

by Ito's rule, that

ft x(s)dy(s) - x(t)y(t) - fty(s)dx(a)

0 0
and

F(x+B(t)) - F(x) - ft f(x+B(s))dB(s) -1/2 ft f'l(x+B(s))ds,

0 0
we derive

p('")dz exp(F(z 0) - F(x) + z oyt

(2.6)
n

xE(OII 1 {x+B(s)dz }exp -J'y(s)dB(s) - 1/2 ftV(x+B(s))ds)

{x+Eo J!Cd 1 0

where V(x) = (a+l)x 2 + bx + c. To evaluate this last expectation, we treat

the quadratic part of V as arising from the Radon-Nikodym derivative of

x + B(O) with respect to the Ornstein-Uhlenbeck process CI()1 the linear

terms in the exponent in (2.6) can then be re-expressed in terms of 2C.)

and E (3. The result is

exp{xk(z0 -x) + k - - t11

(2.7)
~n

110 lu; (s ) CdzJ e xp "(2t-Y )

Given FY, E(O) is a Gaussian process, and thus the expectation in (2.7) may
t

be written, up to a normalizing factor, as

-1f 4 exp(- 1/2 (¢ - Ey 0 + P v, P 0( Ey o- + P 0v)>}expl/2<VP0v

R
2 n+

2

-7-I



where Ey 0 = E(2 IF } and where dZ signifies that C1 Z01yo 0 t1

4 = z,*eC 3n+1= z are held fixed and integration is over the remaining

variables. But this last expression integrates by standard Gaussian integral

formulae to a factor proportional to

exp(- 1/2 <z - M + PV, QI(z - M + P)>). (2.8)

By cobining (2.6)-(2.8), we arrive at the desired result. U

The conditional density of the process x(O) thus consists of a Gaussian

factor multiplied by expF(z0). Further conditioning on x(t) will remove

exp F(z0) and leave only the normal part. Indeed, let

-x(2) T

Q(t,s,11,s n) =

n Q21 Q22

Q22(t,s1,"0,s n ) = Var(-(2 ) IFY)

Er 12(t)-r 13 t ) 1 M
Pv = , M=

Corollary 2.9. The conditional law of (x(sl),'0,X(s)) given Fy  and
t

x(t) is normal with mean

M(2) _ (2) + r1 (t) Q (x(t) ml(t) + Pv)
11 21 1 1

and varianceQ r-IW Q

22 11 21-8-



Proof. Use (2.1) to conclude that

p(zisSe1 ,nIs xo(t)- z0,FY) = p(z0,t, ,zn,snF)/p(z0,tFY)

a expf- 1/2 (- - M + Pv,Q -(z_- M + Pv)>)

x exp 1/2r11(t) (z - m (t) + (Pv) 1 ) 2.

But this is just the conditional density of 1,°°°,n given n0 where

(no,0,69 ) is a normal random vector with mean M - Pv and variance Q.

The result then follows from the standard formula for conditioning one part of

a normal random vector upon another. S

This corollary demonstrates how closely those diffusions defined by

(1.1)-(1.2) are related to Gaussian processes. In fact, the steps above can

be repeated to calculate joint densities of the process x(°); (2.1) yields

the correct expression if y(e) is replaced by 0 . Then, in the same way,

it follows that (x(s ),*°,x(Sn )jx(t)) is normal, that is, the process

[x(s)O 4 s 4 t) conditioned on the endpoint x(t) is Gaussian. This

conditional normality is key to the filtering results of §3.

'iii
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3. Filtering Equations.

3.1. Conditional Moments.

Let x (t) :-E{x(t)IFY}. xW(t) satisfies the equation

n-2 n-I +'dx tn(n-l)/2x + nf(x)x ]dt + x - xx l dy - xdt] (3.1)

(Fujisaki, Kallianpur, Kunita (2]). To calculate x one must therefore also

n+n
find x , f(x)x , etc. These in turn also satisfy stochastic differential

equations that introduce yet other quantities to be estimated. Continuing in

this manner, if we begin with x, we arrive at an inf nite, coupled set of

conditional moment equations for x~x ,*..,x ,...f(x)x, etc. Our approach

to finite dimensional computability will be to use conditional moment

identities, derived from the form of p(x,tIFY), to truncate this infinite

system after a finite number of terms. Actually, FDC of the moments could be

argued on general grounds using the fact that the FDC process U(t) (see

immediately below) characterizes p(z,tIFY). However, the approach here leads

to explicit filtering equations.

Straightforward analysis of (2.1) shows that

P(xtIFt) 1 N(t) exp{F(z) - (z-ij(t))2 /2o(t)}
pxt'I

where N(t,x) is a normalizing factor, and

- - K d2  o(o) - 0 (3.2)

f-idp - [-2U - 1/ 2 boldt + ody p(O) - x (3.3)

(See Bene [1].) Note that (3.2) implies that 1 - 22 W Vt 0

and hence that

-1
a (t) V t )0.

-10-



As a consequence, x (t) is well-defined for any n • If a > 0, (1.1)

implies f x) - a2x as jx + a and thus that F(s) a / 2 as

IZI + . Therefore

F(z) - (z - 122 -12 1/2 -1 2

F() ( -U)/2o -1/2 (a G ) )z Izi +
Y 42

and so P(ZtjF ) decays as exp[-z 2 ],6 h1/ 2 (o " - a' /2 ) > 0. If a 0,

then b - 0, c > 0 is necessary in order that (1.1) have a solution f on

R without singularities. Then f will be bounded,and F(z) will grow at

most linearly.

Lemma 3.4. For n ) 0

i n+2- -x
(a a)x (b + 2io2)x + (c + ((2n+1) - i2 )x

-1 n-i n-2

+ 2nI x - n(n-1)x n

• Proof. Integrating by parts, we have

.fdz expF(z) d exp(-(z - U)2/2a]
?(t,x) dz2

foo- fm (Z) + f 2 (z1 5n p(z,t1FY)

vl i o A ax + bp + cx

d2

dz
desired identity.

-11
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Proposition 3.5: x Mt) is FDC for all n

Proof: Since a It) - a > 0 , lemma 3.1 implies that x (t), m ) 2 can be

expressed as a linear combination with FDC coefficients of lower order

conditional moments. Thus it suffices to prove that x(t) is FDC. For

x(t), (3.1) becomes
A ^ 2 -2A

dx f(x)dt + (x .x )dy -_xdt), x(O) x.

Now

12
f(x) f - dz[d/dz expFlzlexp[-lz /2o1

N(t,x)zexFz]x(( - )/]

-- dzz 0- p(ztFy)

-I

x " -A ) -1

and

- -2 2- -1 -1
x = [x(b + 2po ) + c + (1 - 7)o ( - a)

Thus

2 +- 2- -1 - 2

+(x(b + 2)a+ )(a - a) -x ](dy-xdt]

together with (3.2)-(3.3) constitutes a finite-dimensional system for x(t).

Remark. It is also clear that f(t) will be FDC for any n! simply

eliminate f(x(t)) in favor of polynomials in x(t) by integration by parts

as in the proof above. In the same way, filters may be constructed for

any conditional estimate in the infinite set of moment equations generated by

starting with x(t) and using (3.1).

-12-
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3.2. Smoothing.

Proposition 3.6. Let s < t. Then

E~~) F} n sinhics -t-s

E{x(s)IM n (x(t) - xe + (P(ts)v)1 ] + xec -(P(ts)v)2.t sinht 1

Proof: This is immediately consequent from corollary 2.9 once it is noted

that

-r -1 W) sinhKs
r1 1(t)Q2 1 =11 1 1 sinht

and

m 1(t) = xe •t.

Explicit formulae for (P(t,s)v), and (P(ts)v)2  are easily found and will

be given in the next section.

3.3. Polynomial Functionals.

Let q(t) be any non-anticipating functional of the signal process of

the form

(t) t.. n-1 Y(s ,.,s )x (s)ex SnldSn..dS
nI ,.. s 1, n )XI( 1 n n 1 0d

where k 1 ,**I,k n  are arbitrary, non-negative integers and Y(s1 ',s*,e n ) is a

separable function. Also let n(t) - ENWt).
t

Proposition 3.7. )I(t) is FDC

For simplicity we restrict attention to the case

kI = k2 = a kn - 13 the method of proof extends easily to general

choices for the ki's. Our proof relies on the following identity, presented

here in the form that it appears in Marcus and Willsky [7].

1-13-



Lemma 3.8. Let (u 1,'..,u ) be a normal random vector with ej- Euj and

VijT- cov(uipuj). Then

wm
'U

1u Ul  m I 1 e J.+ I V J2 e 3 em + V JlJ2 V34ejs*oe +

The sums are taken over all possible combinations of pairs of indices.

Leivea 3.9. Let a > se > Then
n

EaX(l )OOX(s )IFY,x(t)) xJ(t)a (t' ,
1 n t 'ai J-0

for some separable functions a (tS,...sn), 0 C J- 4 n , depending on

Proof. Let L = (2) + r11 (t) Q 1 2 (t ,..,s )(x(t) -M (t) + (Pv)
-11

Q22 - r11 (t) Q 12Q2 1

and apply lemma 3.8 and corollary 2.9. Thus

E{x(sl )OOX(s )lx(t),Fyl } " 0 + Q 1 0"1

nt n1Y2 3 J

JJ2 1314 "' in

This is an nth order polynomial in x(t) since I is a linear function

of x(t) for each J . Moreover, it is clear that the coefficients aj will

be separable if P0 (t s1,'',n} and hence Q(t,sl,..,s) are separable (Q

is a subnatrix of P0  out

-14-



R(t,t) R(t,s1  .. R(t,sn)

" 
P(t s fes a R(slot) R(s1,8i) ... R(51s,9)

R(Sn,t) * • * Rl nsn

and R(t,s) - yAlt,s)R(sts) - 4A(t,0)4l(s,0)R(s) where 60t,s) is the

state transition matrix of A(t). Thus P(t,.-.,s n ) is indeed separable.
0

Remark. Upon further inspection of the terms 4(ts) and R(s), the proof

of this lemma demonstrates that aj may be written

a(ts..~~ a I tBS 2 s~ee~~n (3.10)

where each a ,k1 0 4 k 4 n is either deterministic or a non-articipating

functional of the observation process y( .).

Proof of proposition: By using lemma 3.9

E (I t) FF I

IN -. n-l (S ... n (S , E{E[x(s , )...x*s ,x*t] FydSn*.ds1

r ..0 ..Yn On nlZE (a .. ~n)t'x~) t on*
0 0

n ^ n_1 "IS~ j ' 1
= xJ(t) t( 9 ,s )a j ( . )dSn..dSl a

j=0 0 0 " )Ss

To complete the proof, it is only necessary to show that the coefficients of

xJ(t) are FDC. Each coefficient is a sum of terms of the form

U n+1~t W W . do-o

which can be computed on-line by the system

-15-



2l(t) - W(t) u2(O) - 0

u(lt) g W (t)u (t) u2 (0) - 0

2 n- n

Un+(t) a&(t)unt) Un+l(0) = 0

Thus un+1(t) will be FDC if each ai (t) is FDC. However, reasoning from

the remark after lemma 3.9, each Q (t) will be either deterministic, or a

deterministic function multiplied by one of the y(o)-dependent B ,(t) from
J ,k

(3.10). Now by the proof of lemma 3.9 these 8 1,(t) come from the
J ,k

y()-dependent terms in ti, I < i 4 n, and Q. Actually, inspection

reveals that 1) Q is independent of y(O), since it is a function of the

joint covariance ( (t),), 1(S); and 2) the only y-dependence in the

i lies in Pv. Recall from 12, that a typical element of Pv is

cov(C (s),9 2(t) - (t))i a simple calculation shows this equals

covl& 1s),&2(s) - C3(s)) - e-sinhs fe-U g(u)du
0

(3.11)

- '-lsinhs fse g(u)du
0

where g(u) - Ky(u) -1/2 b. The y(-) functionals in this expression are

certainly FDC and thus the components 8 C,(t) are FDC. This completes the
j ,k

proof.

The proof of proposition 3.7 is similar to the proof of the linear case

due to Marcus and Willsky (7] in its use of Gaussian moment identities.

Actually, because conditional Gaussianity obtains in the linear case without

first conditioning on x(t), Marcus and Willsky are able to use the general

filtering equation and a simpler moment identity than lemma 3.8 to build a

,]. -16- "
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proof by induction on the order of n(t). By 'general filtering equation' is

meant the representation of Fujisaki, Kallianpur, Kunita (2]:

A k 1 * Sn_2(t k2( k
dl - z(x (t) ft. a" ,") s)'"x (an_1)dn d

0 0 1
(3.12)

+ (n Otx(t) - f(t)x(t)][dy(t) - x(t)dt].

In our proof, application of (3.12) is superfluous, although, when calculating

the filter in a particular example, it can be employed to advantage. The

example below will illustrate the possibilities.

Marcus, et al [6] give an alternate proof of finite dimensional

computability when f is linear by using homogeneous chaos theory and

multiple integral expansions. Such an approach might also be possible here by

first conditioning on x(t), but this is not pursued, since the calculation

would ultimately be like the one here.

Example. Consider the model

dx(t) - f(x(t))dt + db(t) x(O) - x0

2
dn(t) - x (t)dt n(o) - 0

dy(t) - x(t)dt + dw(t) y(O) = 0

where the x() and y() equations are as in (1.1)-(1.2). We will present

finite dimensional system for computing n(t) - E{ x 2 (s)dsFy}. This
0

problem was chosen in part by way of comparison to the special case f i 0

which is treated in detail in Liu and Marcus [4] The system given here for

n(t) is, of course, one among many possibilitiest our construction was

guided by the decision to use Ito equations driven by the innovations

dV(t) : dy(t) - x(t)dt.

-17-
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Let

u(t) = (sinht)- 2 ft (sinhs)'da * (sinhKt)-1(4K)-sinh2Ct -1/2 t1"0

Then A
3 I~

dli = x dt + u(t) x -x x] dv

2 v2t-1 0

+ 2[x - x I2(u(t)(v (t)K sinht + - (oy(t) - 0))
2

+ v (t)sinht - (Ksinht) -1'v(t)]dV

n(0) = 0 (3.13)

a

dvI = sinhKt (U - Oy(t)) f- t v0 1  = 0
-(0)

dv2 =1et[Iylt) -1/2 b) dt v2 (0) = 0

2
dv = (sinhKt)2v2(t)dt v (0) - 0.

3 v2 (tt3

(3.13) is not the complete system, since equations for P,O,x,x , and x are

also needed. However these are easily garnered from 13. A brief derivation

of (3.13) follows. From (3.12)

din - x dt + (nx - nx)dV. (3.14)

However, corollary 2.9 implies

Efx 2 (s)IF ,x(t)) - - r 11 t)Q2 1Q 1 2 + 2(x(s)IF Y,x(t)}

(3.15)~-21tQ 2 2

= F(ts) + r -t x t
11 2

-1 -1

+ 2x(t)r (t)Q2 1 [m1 (s) - (Pv)2 - r11(t)Q 2 1(m1(t) - PVlI

where F(t,s) combines those terms not depending on x(t). Now

I ! -18-



r1 CtQ 2  sinhacs/sinh~t,

anid

Pv 4  Pv 1Cs) - KC sinhacs [fte'Cg(u)du - f e Cg(u)dul.
10 0

I (Recall that g(u) - iy(u) - 1/2 b.) Further, it can be shown

(tM - PVCt W (pA - 0y)Ct).

Using these identities in (3.15) it follows that

'n flx - =ftE{(x(t) - (t))E(x2(s)tF,~)t~d
0

3 2 ^2 2 0 -1
(X - x x)u(t) + 2(x -x )u(t)[UCy - 11 +O+ K sinhKt fte Cgudu

0

2(2 - 2)[sn't -1ftihcstC)-Pv(ld

0

-(icsinhict) 1 ft(Sinhlcs)2 IC. '1g~u)duds3.
0 0

A/2 2 2 -1
(x -x x)u~t) + 2(x -x )(u(t)(V 2 (t,'C sinhict + - K O-~CyMt-1))

+ V I sinhK + -(icsinhlct) -1V 3(t)]

I (3.16)

Placing (3.16) in (3.14) one obtains the desired result.
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